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Abstract
A rigorous theory of electromagnetic wave scattering by small perfectly
conducting particles is developed. The limiting case when the number of
particles tends to infinity is discussed.
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1. Introduction

Assume that there are many small bodies Dm, 1 � m � M , distributed in a bounded domain
D ⊂ R

3, ka � 1, a = 1
2 maxm diam Dm,Dm ⊂ D, d = minm�=j dist(Dm,Dj ) � a. The

body Dm has dielectric permittivity εm, ε0 is the dielectric permittivity of the space. The
case εm = ∞ corresponds to a perfectly conducting small body. If Dm is a conductor then
ε′
m = εm + i σm

ω
is its complex permittivity, σm is the conductivity and ω is the frequency. The

scattering problem consists of finding the solution to the equations

∇ × E = iωµH, ∇ × H = −iωε′E, (1.1)

H = H0 + h, E = E0 + e, (1.2)

where H0, E0 is the incident field,

E0 = exξ eikz, H0 = ∇ × E0

iωµ0
, k = ω

√
ε0µ0, (1.3)

µ0 is the permeability of the free space, ξ > 0 is the amplitude of the incident field
E0, ξ = |E0|, ex, ey, ez is the Cartesian orthonormal basis, e and h are scattered fields which
satisfy the radiation condition,

ε′ = ε′
m = εm + i

σm

ω
in Dm, ε′ = ε0 in R

3

∖ M⋃
n=1

Dm,
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M is the number of small bodies. Across the boundary Sm of Dm the tangential component of
E and the normal component of H are continuous. Note that since µ0 is constant, the normal
component of B := µ0H and that of H are continuous simultaneously. Our basic assumptions
are

ka � 1,
a

d
� 1. (1.4)

The results of this paper are of two types:

(a) First, we derive asymptotic formulae for the scattered field at the distances greater than d
from small bodies (particles) when M is not very large say M = O(10); these formulae
can be used for a numerical solution of many-body scattering problems;

(b) Secondly, we derive an approximate equation for the effective field in the medium
consisting of many small particles, M = M(a) → ∞ as a → 0.

Our derivations are valid for particles of arbitrary shape, not necessarily randomly
distributed. For spherical particles with radius a formulae are simpler. The results are
based on the author’s theory of wave scattering by small particles of arbitrary shapes [5, 6].

In section 2 the many-body scattering problem for electromagnetic (EM) wave scattering
is studied in the case M = O(10). In section 3 this problem is studied when M = M(a) → ∞
as a → 0 under suitable assumptions on the growth of M(a),M(a) = O(a−3) as a → 0.

We derive an integral equation for the effective field in the medium consisting of many
small particles.

There is a large literature on scattering by small bodies. The theory was originated by
Rayleigh in 1871, who understood that the dipole radiation is the basic part of the scattered field
if the scatter is small, i.e., ka � 1 [1, 2]. However, only in [3–6], analytical formulae were
derived for the S matrix for acoustic and electromagnetic wave scattering by small bodies of
arbitrary shapes. These formulae allow one to calculate polarizability tensors with any desired
accuracy analytically for bodies of arbitrary shapes. Assumptions (1.4) allow one to consider
a small body Dm as if it was placed in an electrostatic constant field Ee(xm), where xm ∈ Dm

is an interior point of Dm and Ee is the electric field acting on Dm and created by the incident
field E0(xm) together with the field scattered by all other bodies.

The many-body wave scattering theory for acoustic waves was developed in [7–9, 12–14].
This theory is basic for a method for creating materials with a desired refraction coefficient
in acoustics, in particular, materials with a desired wave focusing property [10, 11], and a
material with negative refraction, i.e., the material in which the group velocity is directed
opposite to the phase velocity.

In [15] the EM wave scattering by many small inhomogeneities was studied under the
assumption that these inhomogeneities were smooth perturbations of the dielectric parameter
ε′(x), vanishing outside of a union of many small non-intersecting balls of radius a, centered
at the points xm ∈ D. The main results in [15] were:

(a) An asymptotically, as a → 0, rigorous reduction of the many-body EM wave scattering
problem to solving a linear algebraic system of equations, bypassing the usage of integral
equations;

(b) A derivation of an equation for the effective (self-consistent) electric field Ee in the limiting
medium, which was obtained by embedding a large number M(a) of small particles in
the region D,M(a) = O(a−(3−κ)), a → 0, 0 < κ < 3 is a constant.

The novel points of the present paper are:
The small particles are assumed well conducting, the corresponding perturbation of ε′ is

not necessarily smooth, and the boundary conditions on the boundaries of the small particles
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are taken into account by using general formulae for the polarization dipole moment, induced
on the small particle by the exterior static field Ee. These formulae were derived in [4–6].

There are many papers and books dealing with wave propagation in random media (see
[16] and references therein). These results are not used in this paper and their assumptions do
not hold: we do not assume our particles necessarily randomly distributed.

2. EM wave scattering, M = O(10)

Let us look for the solution of problems (1.1), (1.2) of the form

E(x) = E0(x) +
M∑

m=1

∇ ×
∫

Sm

g(x, t)J (m)(t) dt, g(x, y) := eik|x−y|

4π |x − y| , (2.1)

where the unknown vectors J (m), 1 � m � M , should be chosen so that the boundary
conditions on Sm, 1 � m � M , are satisfied. Outside of the union of the small bodies
Maxwell’s equations (1.1) are satisfied by function (2.1) for any J (m) and H = ∇×E

iωµ0
. It

follows from (2.1) that in the region |x − xm| � d � a, 1 � m � M , the field E(x) can be
well approximated by the formula:

E(x) = E0(x) − iω
M∑

m=1

∇ × (g(x, xm)P (m)), |x − xm| � d � a, (2.2)

where we have used the formula:∫
Sm

J (m)(t) dt = −iωP (m), (2.3)

where P (m) is the induced on Dm dipole moment.
Indeed, if ρ(x) is the density of the electric charge, then

P (m) :=
∫

Dm

xρm(x) dx.

From the conservation of the charge one gets −iωρm + ∇ · J (m) = 0. Therefore

−iωP (m) = −
∫

Dm

x∇ · J (m) dx =
∫

Dm

J (m) dx −
∫

Sm

sNjJ (m)
j ds, (2.4)

where over the repeated indices j summation is understood and Nj is the j th component of
the unit normal N to Sm directed out of Dm. We assume that N ·J (m) = 0 on Sm. If the depth
of the skin layer is negligible compared with the size of Dm, then one may assume that the
current J (m) is concentrated on the surface S(m), so

∫
Dm

J (m) dx = ∫
Sm

J (m) dt , so formula
(2.3) is obtained.

If k � 1, then one may assume that the small body Dm is placed in a constant effective
field

Ee(xm) := E0(xm) − iω
∑
m′ �=m

∇ × (g(x, x ′
m)P (m′))|x=xm

. (2.5)

The induced dipole moment P (m) is calculated by the formula

P
(m)
i = α

(m)
ij ε0V

(m)Eej (xm) 1 � i � 3, 1 � m � M, (2.6)

where summation is understood over the repeated indices j, V (m) is the volume of Dm,V (m) =
O(a3) and α

(m)
ij is the polarizability tensor of the body Dm. Analytical formulae for this tensor

for homogeneous dielectric bodies of arbitrary shapes were derived in [5, 6], so that one may
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consider the polarizability tensors α
(m)
ij := α(m) of the bodies Dm as known for the bodies Dm

of arbitrary shapes. Formulae (2.5) and (2.6) reduce the many-body scattering problem to
finding the unknown vectors Ee(xm) from the linear algebraic system:

Ee(xm) = E0(xm) − iω∇ ×
M∑

m′ �=m

g(x, xm′)|x=xm
α(m′)ε0V

(m′)Ee(xm′) 1 � m � M. (2.7)

If the bodies Dm are balls of radius a, then α(m) = 3 ε′
m−ε0

ε′
m+2ε0

δij , where δij is the Kronecker
symbol, ε′

m is the (complex) dielectric permittivity of Dm and ε0 is the dielectric permittivity
of the space exterior to the union of the small particles.

Let us show that the error of formula (2.2) is negligible. The omitted error term in (2.2)
is equal to

−iω∇ ×
∫

Sm

(g(x, t) − g(x, xm))J (m)(t) dt = o(a3), a → 0. (2.8)

Indeed, using assumptions (1.4), the inequality |t − xm| � a, valid for t ∈ Sm, the estimates∫
Sm

J (m)(t) dt = O(a3) and V (m) = O(a3), and formulae (2.3) and (2.6), one obtains:

|g(x, t) − g(x, xm)| � c max

(
ka

d
,

a

d2

)
.

Thus, term (2.8) is negligible compared with the term −iω∇ × (g(x, xm)P (m)) in the region
|x − xm| � d � a.

This concludes the discussion of many-body EM wave scattering when M = O(10).

3. EM wave scattering, M → ∞
Suppose that the number of small particles is very large. This number M in a bounded region
D is of the order O

(
1
d3

)
. Therefore, if d � a, then M = O

(
1
d3

) � O
(

1
a3

)
. Thus, to satisfy the

assumption a � d in (1.4) one has to assume that the total volume of the small particles is
negligible: this volume is of the order

O(Ma3) � O
(

1

a3
a3

)
= O(1).

If M → ∞ in such a way that a → 0 and (1.4) holds, then we replace the sum in (2.7)
by the integral and get for the limiting field the equation

Ee(x) = E0(x) − iωε0∇ ×
∫

D

g(x, y)α(y)N(y)Ee(y) dy, (3.1)

where α(y) is the average value of the polarizability tensor at the point y,

α(y) := lim
diam
(y)→0

1

N (
(y))

∑
xm∈
(y)

α(m),

where 
(y) is a cube centered at the point y,N (
(y)) is the number of small particles in

(y) and N(y) defines the number N (
) of small particles in any subdomain 
 ⊂ D by the
formula

N (
) :=
∑
xm∈


1 = 1

γ a3

∫



N(y) dy[1 + η(a)], η(a) = o(1), a → 0. (3.2)

Here γ = constant, γ is defined by the formula V (m) = γ a3. Thus, Ma3 � O(1) if and
only if N(y) � 1. Let us explain how formula (3.1) is derived. Its derivation is based on the
following lemma.
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Lemma 3.1. Assume that f (x) and N(x) are continuous functions in a bounded domain D
and the points xm are distributed in D so that (3.2) holds. Then there exists the limit:

lim
a→0

M∑
m=1

f (xm)γ a3 =
∫

D

f (x)N(x) dx. (3.3)

Proof. Let us partition D into a union of cubes 
j,D = ∪j
j , where 
j := 
j(y
(j)) are

cubes with no interior points of intersection, y(j) is the center of cube 
j, |
j | is the volume
of 
j and maxj diam
j := b. One has

M∑
m=1

f (xm)γ a3 =
∑

j

f (y(j))(1 + η1(b))γ a3
∑

xm∈
j

1

=
∑

j

f (y(j))N(y(j))|
j |(1 + η1(b))(1 + η(a)), (3.4)

where limb→0 η1(b) = 0, lima→0 η(a) = 0, and we have used formula (3.2). Passing first to
the limit a → 0, and then taking b → 0, one gets (3.3) because

∑
j

f (y(j))N(y(j))|
j | →
∫

D

f (y)N(y) dy

as b → 0. Indeed, the sum on the left is a Riemann sum for the integral on the right.
Lemma 3.1 is proved.

�

Applying this lemma to sum (2.7) and assuming V (m) = γ a3, one gets equation (3.1).
The smaller are the parameters a

d
and ka, the more accurately equation (3.1) describes the

limiting field in the medium. The smallness of the parameter a
d

implies the smallness of N(x)

as we have already mentioned above. It follows from (3.1) that in the region D the following
equation holds:

∇ × ∇ × Ee = k2Ee − iωε0∇ × (α(x)N(x)Ee(x)).

Thus, the limiting field Ee satisfies a Maxwell’s equation in the region D and in this region
the term

−iωε0∇ × (α(x)N(x)Ee(x)), |N(x)| � 1

can be interpreted as the current.
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